Inverse Trigonometric Functions

Functions	Domain	Range (Principal Value Branches)
$y = \sin^{-1} x$	[-1, 1]	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1} x$	[-1, 1]	$[0,\pi]$
$y = \csc^{-1} x$	$\mathbf{R} - (-1,1)$	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]-\left\{0\right\}$
$y = \sec^{-1} x$	$\mathbf{R} - (-1, 1)$	$[0, \pi] - \{\frac{\pi}{2}\}$
$y = \tan^{-1} x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$y = \cot^{-1} x$	R	$(0,\pi)$

.

• The value of inverse trigonometric functions which lies in its principal value branch is called the principal value of that inverse trigonometric functions.

•
$$y = \sin^{-1} x \Rightarrow x = \sin y$$

•
$$x = \sin y \Rightarrow y = \sin^{-1} x$$

•
$$\sin(\sin^{-1} x) = x$$

•
$$\sin^{-1}(\sin x) = x$$

•
$$\sin^{-1}(1/x) = \csc^{-1}x$$

•
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

•
$$\cos^{-1}(1/x) = \sec^{-1}x$$

•
$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

•
$$tan^{-1}(1/x) = cot^{-1}x$$

•
$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$

•
$$\sin^{-1}(-x) = -\sin^{-1} x$$

•
$$tan^{-1}(-x) = -tan^{-1}x$$

•
$$tan^{-1} x + cot^{-1} x = \pi/2$$

•
$$cosec^{-1}(-x) = -cosec^{-1}x$$

•
$$\sin^{-1} x + \cos^{-1} x = \pi/2$$

•
$$\csc^{-1} x + \sec^{-1} x = \pi/2$$

•
$$tan^{-1}x + tan^{-1}y = (x+y)/(1-xy)$$

•
$$tan^{-1}x - tan^{-1}y = (x - y)/(1 + xy)$$

•
$$2 \tan^{-1} x = \tan^{-1} (2x/(1-x^2))$$

•
$$2 \tan^{-1} x = \sin^{-1} (2x/(1+x^2)) = \cos^{-1} ((1-x^2)/(1+x^2))$$

Sample Examples

• Find the principal value of $\sin^{-1}(1/\sqrt{2})$

Solution:-

$$\sin^{-1}(1/\sqrt{2}) = y$$

$$\sin y = (1/\sqrt{2})$$

We know that the range of the principal value branch of sin–1 is, $(-\pi/2, \pi/2)$ and sin $(\pi/4)$ = $(1/\sqrt{2})$

Hence the value of $\sin^{-1}(1/\sqrt{2})$ is $\pi/4$.

• Show that $\sin^{-1} (2x\sqrt{1-x^2}) = 2\sin^{-1} x$

Solution:-

Let
$$x = \sin \theta$$
. Then $\sin^{-1} x = \theta$
 $\sin^{-1} (2x\sqrt{1-x^2}) = \sin^{-1} (2\sin \theta \sqrt{1-\sin^2 \theta})$
 $= \sin^{-1} (2\sin \theta \cos \theta)$
 $= \sin^{-1} (\sin 2\theta)$
 $= 2\theta = 2 \sin^{-1} x$.